Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
OpenNano ; 11 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2252122

ABSTRACT

Various health agencies, such as the European Medical Agency (EMA), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO), timely cited the upsurge of antibiotic resistance as a severe threat to the public health and global economy. Importantly, there is a rise in nosocomial infections among covid-19 patients and in-hospitalized patients with the delineating disorder. Most of nosocomial infections are related to the bacteria residing in biofilm, which are commonly formed on material surfaces. In biofilms, microcolonies of various bacteria live in syntropy;therefore, their infections require a higher antibiotic dosage or cocktail of broad-spectrum antibiotics, aggravating the severity of antibiotic resistance. Notably, the lack of intrinsic antibacterial properties in commercial-grade materials desires to develop newer functionalized materials to prevent biofilm formation on their surfaces. To devise newer strategies, materials prepared at the nanoscale demonstrated reasonable antibacterial properties or enhanced the activity of antimicrobial agents (that are encapsulated/chemically functionalized onto the material surface). In this manuscript, we compiled such nanosized materials, specifying their role in targeting specific strains of bacteria. We also enlisted the examples of nanomaterials, nanodevice, nanomachines, nano-camouflaging, and nano-antibiotics for bactericidal activity and their possible clinical implications.Copyright © 2023 The Author(s)

2.
Coronaviruses ; 3(1):56-64, 2022.
Article in English | EMBASE | ID: covidwho-2264651

ABSTRACT

The inception of the COVID-19 pandemic has jeopardized humanity with markedly dam-pening of worldwide resources. The viral infection may present with varying signs and symptoms, imitating pneumonia and seasonal flu. With a gradual course, this may progress and result in the deadliest state of acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). More-over, following recovery from the severe brunt of COVID-19 infection, interstitial portions of alve-oli have been found to undergo residual scarring and further to have compromised air exchange. Such alterations in the lung microenvironment and associated systemic manifestations have been recognized to occur due to the extensive release of cytokines. The mortality rate increases with advancing age and in individuals with underlying co-morbidity. Presently, there is no availability of specific antiviral therapy or any other definitive modality to counter this progressive worsening. However, we believe principles and advancing cell-based therapy may prove fruitful in subjugating such reported worsening in these patients. This article reviews eminent knowledge and relevant ad-vancements about the amelioration of lung damage due to COVID-19 infection using adipose tis-sue-derived-total stromal fraction (TSF).Copyright © 2022 Bentham Science Publishers.

SELECTION OF CITATIONS
SEARCH DETAIL